
1502 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

The “Weight Smoothing” Regularization of MLP for Jacobian Stabilization
Filipe Aires, Michel Schmitt, Alain Chedin, and Noëlle Scott

Abstract—In an approximation problem with a neural net-
work, a low-output root mean square (rms) error is not always
a universal criterion. In this paper, we investigate problems
where the Jacobians—first derivative of an output value with
respect to an input value—of the approximation model are
needed and propose to add a quality criterion on these Jacobians
during the learning step. More specifically, we focus here on
the approximation of functionals A; from a space of continuous
functions (discretized in pratice) to a scalar space. In this case, the
approximation is confronted with the compensation phenomenon:
a lower contribution of one input can be compensated by a
larger one of its neighboring inputs. In this case, profiles (with
respect to the input index) of neural Jacobians are very irregular
instead of smooth. Then, the approximation ofA becomes an
ill-posed problem because many solutions can be chosen by the
learning process. We propose to introduce the smoothness of
Jacobian profiles as ana priori information via a regularization
technique and develop a new and efficient learning algorithm,
called “weight smoothing.” We assess the robustness of the weight
smoothing algorithm by testing it on a real and complex problem
stemming from meteorology: the neural approximation of the
forward model of radiative transfer equation in the atmosphere.
The stabilized Jacobians of this model are then used in an
inversion process to illustrate the improvement of the Jacobians
after weight smoothing.

Index Terms—Inverse problems, ill-posed problems, MLP, neu-
ral jacobians, regularization.

I. INTRODUCTION

W E study in this paper the approximation of a functional
by a multilayered perceptron The functional

describes dependencies between a spaceof smooth
functions continuous, , , etc. and the space

where and (1)

In our application is a temperature profile in the atmosphere,
pressure temperature. In practice, the function is

discretized but we cannot
consider the components in the input of
the neural network independently. The are ordered by the
index (for example the altitude) and hence possess some
regularities of So, the regularity properties of function
must be transposed in its discretizationIn our case, thea
priori knowledge is that the neural approximator describes a
functional that has a smooth contribution of ordered inputs
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to each output. So, thea priori knowledge we have on
the problem consists in the smoothness—in terms of the
minimization of some derivatives—of the neural Jacobian
profiles: where

def

is the th Jacobian profile. A profile is defined
as a discretized function with respect to some ordered index

and a neural Jacobian
def

is the first derivative
of the output with respect to the input of the neural
network We focus on neural models but the following
discussion could be applied in the general context of statistics.
In our case, the neural Jacobians have an important physical
meaning expressing the link between the frequency of the
measurement channels to the atmospheric layers sounded (see
our application on Section III).

A problem is said ill-posed if its solution may not exist,
be nonunique or nonstable. The approximation ofis an
ill-posed problem due to the nonunicity and the nonstability
of the solution. Regularization [21] is one way to make our
problem well-posed by stabilizing the neural Jacobians. The
idea of regularization is to add a penalty term to the
usual quality criterion in the learning process, with
usually chosen as the mean square error in neural ouputs.
This penalty term uses a regularizer (or stabilizer) which
forces the solution of the optimization problem to satisfy
some constraints expressing thea priori knowledge about the
approximation problem.

According to [22], a regularizer is a lower semicontinuous
functional that possesses the following three properties.

• The solution of the inverse problem belongs to the
domain of definition of the functional

• On its domain of definition, the functional admits
real-valued non negative values.

• The sets are all compact.

Regularization decreases the representation’s capability of
the network but increases the bias (bias/variance dilemma
[10]). So, the principle of regularization is to choose a well-
defined regularizer to decrease the variance and to affect the
bias as little as possible [4].

Examples of regularizers are the double backpropagation
(DBP) [7] and the input perturbation (IP) [3] wich both
force the neural function to have small perturbations
in the outputs for small perturbations in the inputs
During the learning step, they add the constraint of minimizing
the magnitude of neural Jacobians With the same goal
of smoothing the neural function , a constraint (i.e., a
smoothing operator in the network ) is used in [17] and [11]
to define directly the structure of the network , called gen-
eralized regularization networks (GRN’s). In [2] the authors

1045–9227/99$10.00 1999 IEEE



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999 1503

have also tried to minimize the second derivative’s magnitude.
And recently, [14] have proposed to learn simultaneously a
functional and its Jacobians.

In this study, we develop a specific and efficient algorithm,
the “weight smoothing” (WS) regularization, to introduce the
constraint of Jacobian profile smoothness during the learning
step. This is a new approach for regularization, very different
from previously quoted methods using neural Jacobians like
DBP, IP, or GRN that only minimize the neural Jacobian
amplitude to smooth the neural-network behavior. The WS
regularization is only appropriate when inputs of network
are the discretization of a smooth function (so a natural
ordering and regularity exists in inputs). This type of functional
approximation is widespread. Examples include the retrieval
of temperature or gas concentration profiles in the atmosphere
from space observed outgoing radiances and, generally, all
problems with smooth input data, like the salinity in the ocean
(smoothness due to the diffusion), the propagation speed in a
geological layer (smoothness due to the homogeneity of the
layer), etc.

This paper is organized as follows: we first describe the
regularizer and the resulting general learning algorithm. Then,
an additional specification is introduced into the algorithm in
order to speed up the learning step. Finally, a complex and real
example stemming from meteorology is described. It concerns
the approximation of the radiative transfer in the atmosphere
(direct and inverse problem).

II. REGULARIZING BY SMOOTHING JACOBIAN PROFILES

A. Specifying the Smoothness of Jacobian Profiles

The MLP neural network carries out a function
, where , , and is the set of

parameters of the neural network. For example, in a MLP
network with one hidden layer , the th output component
of the network is defined by

(2)

where is a sigmoid function, is the activity of unit and
is the th layer of the network (with for the input layer).
We have deliberately omitted the usual bias terms in expression
(2) to simplify the notation without loss of generality.

To choose the parameters, we apply a learning algorithm
using a data set of examples We
assume that these axamples are independent and identically
distributed and generated by the joint distribution of
[4]. A quality criterion is defined on this training set.
We used the error backpropagation (BP) algorithm [19] for
the optimization step. We introducea priori information to
regularize the learning step by adding a constraint to smooth
the neural Jacobian profiles

The neural Jacobians in the previous example (an MLP

network with one hidden layer) are

def

(3)

For a more complex MLP network, with many hidden layers,
there exists a BP algorithm computing efficiently the neural
Jacobians [4].

We smooth the th Jacobian profile using a linear
Tikhonov’s regularizer [21] (also called the Phillips–Twomey
method [16]) of the form: The regular-
ization matrix could have different meanings. We give two
examples of Tikhonov’s regularizer with matrix and

...
...

...
. . .

. . .
. . .

. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

For matrix , we want to minimize the discrete second-
derivative of the Jacobian profile (with respect to the input
index), which means that the Jacobian profile should be as
linear as possible (this is called a linear profile constraint).
The regularizer

is real-valued and nonnegative because the matrix
is degenerate and possesses two zero eigen values that

correspond to the two undetermined parameters of a linear
profile

Similarly for , we want to minimize the discrete third-
derivative of the Jacobian profile to have a profile as quadratic
as possible (this is called a quadratic profile constraint). The
regularizer is real-valued and nonneg-
ative because the matrix is degenerate and
possess three zero eigen values that correspond to the three
undetermined parameters of a quadratic profile

All the a priori information introduced is on matrix
The new criterion becomes:
where is the regularization parameter balancing the impor-
tance of the two criteria and

For equal to the identity matrix, the regularizer minimizes
the neural Jacobian’s magnitude, which leads to an equivalent
technique to that quoted in introduction (DBP, IP, and GRN
techniques).

B. Global Smoothing of Jacobian Profiles

To estimate parameters of the network by gradient-based
optimization (e.g., stochastic gradient descent or conjugate
gradient optimization), we require the derivative of
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The term is the same as in the usual BP
algorithm and the computation of follows:

(4)

where is the transpose of matrix We give some practical
details about the derivative in (4) with the example of the
previous matrix in the Appendix.

The stochastic gradient version of the regularized learning
algorithm becomes:

• propagate example in the network by relation (2);
• compute the Jacobians with formula (3);
• compute the derivative by usual BP algo-

rithm;
• compute the derivative by formula (4) (see

(14) in the Appendix for a more detailed expression);
• modify the synaptic weights by stochastic gradient

descent.

This algorithm is computer intensive. For functions in
spaces of relatively low dimensions, it can be used as pre-
sented. In higher dimensions, it is possible to begin the
learning step by the usual BP algorithm and then use the
regularization technique to smooth the Jacobian profiles.

C. The “Weight Smoothing” Regularization

In this section we search for a less complex, more rapid
and efficient algorithm. Let us examine in more details the
minimization of the cost We have

(5)

where is the vector ; and is the
vector ; The minimization
of the smoothing criterion is then equivalent to the orthogo-
nalization of the two vectors in (5). By the Cauchy–Schwartz
inequality

(6)

where
The minimization of the terms is the classical

“weight decay” regularization. And the minimization of
(independent of the ouput smoothes the weight

profiles entering units and then smoothes the contri-
bution of inputs to the hidden layer (Fig. 1). This approach is
more constrained than the algorithm developed in Section II-
B because if we orthogonalize the two vectors, the global

Fig. 1. Example of smooth of weight vectorW
�| :

Jacobians (input–output) will be smooth, but the internal
profiles in the hidden-layer may still be very irregular and
exhibit the compensation phenomenon: a lower contribution
of one input can be compensated by a larger one of its
neighboring inputs (this is a particular kind of overfitting
concerning the smoothness of the underlying Jacibian profiles).
If we minimize the norm of the two vectors, the internal
profiles have to be smooth. The minimization of the norm
of the second vector specifies that the hidden-layer of the
network is a kind of filtering preprocessing step solving the
compensation phenomenon directly. So, we substitute the new
penalty term for the previous

(7)

with a parameter balancing the importance of the weight
decay and the preprocessing filter regularizers. Then during
learning, we iteratively modify the weights as in the usual
BP but with an additional term, for every example in
the training set

for

for

(8)

For example, with the matrix we have

(9)

This algorithm, called WS regularization, is very cheap
because it requires only few additions and multiplications more
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Fig. 2. Typical temperature profiles in the atmosphere.

than the usual BP for each weight modification. And as we will
see in the next section, the results of learning are exactly what
we expect.

III. A PPLICATION TO THE RADIATIVE

TRANSFER IN THE ATMOSPHERE

Our application is based on the radiative transfer equation
(RTE) in the earth’s atmosphere, which can be summarized by

(10)

where is the measured brigthness temperatures
and the geophysical parameters describing the
atmospheric situation (surface and atmospheric temperature,
concentration of various gases like water vapor or ozone
at different altitudes on the atmosphere). For the complete
equation involving the physical parameters, see [20]. Among
these geophysical parameters, we only consider the vertical
temperature profile. It is a function of the altitude or of the
atmospheric log-pressure (these two quantities are quasilin-
early dependent). We show five typical temperature profiles in
Fig. 4, belonging to five different air masses (tropical, mid-
latitude type 1 and 2 and polar type 1 and 2). Note that
the temperature increases smoothly with the log-pressure. The
direct problem concerns the determination of the measured
brightness from the geophysical variables In the inverse
problem, we try to retrieve the geophysical variables[like
the vertical atmospheric temperature profile in (10)]
from the measured brightness temperatures in various
spectral intervals

A. Regularization of the Direct Model

The TOVS instrument (TIROS-N Operational Vertical
Sounder), flown aboard the satellites of the TIROS-N/NOAA

(National Oceanic and Atmospheric Administration of the
United States) series since 1979, measures the brightness
temperature emitted by the atmosphere in the infrared and
the microwaves ranges. Of its 27 channels (that correspond
to 27 frequencies) measuring the brightness temperature, 11
are “sensitive” to temperature and then are used to restitute
this profile.

In this section, we want first to determine the magnitude
of these 11 channels, using only the information from

the temperature profile. One limitation of the direct model of
(10) is that here represents the temperature profile and
the brightness temperatures measured in the subset of the 11
temperature sensitive channels. The atmosphere is discretized
in 60 atmospheric levels, so the variable

This application is clearly a functional because the input
space (the space of temperature profiles) is a space of real,
discretized and continuous functions pressure tempera-
ture. The compensation phenomenon is present in this model
because the error on the transmission factor of a given atmo-
spheric layer can be compensated by one of its neighboring
layers [18]. So we apply our WS regularization technique with
a quadratic constraint for the Tikhonov’s regularizer (matrix

of Section II-A).
The network used here is a MLP network with one hidden

layer. The architecture has 60 units in the input layer (the
60 atmospheric temperatures between zero and 59 km), 50
units in the hidden layer (this number was chosen empirically
by trial in the training set) and 11 units in the output layer
(the 11 brightness temperatures of TOVS channels sensitive
to temperature).

For the training and the testing data set we have merged the
two climatology data bases TIGR2 [8] and TIGR1 [5]. TIGR
stands for “Thermodynamical Initial Guess Retrieval” and is
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a vast and as diversified as possible set of real atmospheres.
For each of these atmospheric situations, the corresponding
TOVS brightness temperatures are then computed by the 4A
(automatized atmospheric absorption atlas) algorithm [20].
These two data sets come from a sampling process of about
100 000in situ measurements (geophysical parameters). They
are two reasons to perform this sampling process: first, some
of the 100 000 radiosondes measurements have poor quality
(missing data, instrumental noise, etc.), so quality criteria have
to be used to select only adequate measurements. Second,
the simulation of the brightness temperature spectrum emitted
by the atmosphere for each radiosonde measurements is very
computer expensive. We extract from the TIGR data base 1761
atmospheres for the learning step and 681 atmospheres for the
generalization step.

We apply the BP algorithm with and without WS regular-
ization. We empirically choose to tend to make the
two parts of the criterion data/regularization have comparable
weights. During the WS learning, we have observed that the
weight decay term (acting in connections between layer
and layer ) has no significant effect on the results. So, we
take in (8). The most important part of the WS
regularization is the smoothing of input contributions to the
hidden layer (“filtering preprocessing” step).

We have tested similarly two classical regularization tech-
niques: the “weight decay” and the “weight elimination.” The
penalization parameter was choosen empirically by trial to
ensure a maximum performance level on both the training and
the testing set (a proper method would use a cross-validation
approach). The root mean square (rms) errors obtained with
these two regularization techniques during the generalization
step are close to 0.45 Kelvin. This test error is too high for
our purpose, so these two techniques are not well adapted
for this kind of problems. On the other hand, rms test errors
for the neural estimation with or without ws regularization
are good: an rms test error in the brightness temperatures
lower than 0.2 Kelvin, in data between 150 and 300Kelvin.
This is a good result because the errors are comparable
to the noise of the TOVS instrument. As WS restricts the
representation capabilities of the neural network, the training
performances should be worse. The fact that we obtain same
learning errors with and without WS illustrates perfectly the
compensation phenomenon: many physical models can give
the same level of error in output because the learning problem
is under-constrained. The goal of WS regularization is to
avoid solutions created by the compensation phenomenon, and
choose the most realistic and physically acceptable solution to
the estimation problem among all solutions.

In Fig. 3, we have represented the neural Jacobian profiles
for two networks (with and without regularization) and for
four different channels of TOVS taken among the 11. Fig. 3
shows that without WS, the profiles of neural Jacobians are
very irregular. This is due to the compensation phenomenon:
an error in the contribution of one atmospheric layer is
compensated by errors in the neighboring layers. This is why
a bad solution (in term of neural Jacobians) can give a good
rms test error. On the other hand, the neural Jacobian profiles
of the regularized network are smooth.

The WS regularization is then satisfactory because it pro-
duces a neural estimation with smooth neural Jacobian
profiles. These neural Jacobian profiles are also consistent
with the physical knowledge we have about the real Jacobian
profiles of They are positive and the pressure where the
Jacobian of a channel is maximum indicates the atmospheric
layer making the largest contribution to the brightness tem-
perature.

The availability of good quality neural Jacobians is very
important. One application of these neural Jacobians is their
use in the numerical weather prediction model of the Meteoro-
logical Operational Centers. These models uses the technique
of variational assimilation [18]: if we have an initial estimation
of the state of the atmosphere given by a first guess, and a
satellite measurement of brightness temperatureperturbed
by an instrumental noise, the estimation of the state of the
atmosphere becomes

(11)

where is the covariance matrix of first guess error and
is the Jacobian matrix The major advantage of
the neural Jacobians is the rapidity for their computation, a
hard limitation in operational models.

B. Neural Inversion of the Radiative Transfer Equation

To show that we obtain a more robust estimation of the
RTE with the WS learning, we study the impact of this
regularization in a neural inversion technique. The inverse
problem of radiative transfer is very important: a vertical
sounder determines the thermodynamical variables in the
atmosphere [5]. So we have to invert the previous direct model

of radiative transfer. The approximation of is also
an ill-posed problem because its solution can be: nonexistent
(due to noise in measurements), nonunique (with the prob-
lem of compensation phenomenon) or nonstable (because the
numerical computations are ill-conditioned) [18].

One strategy for the resolution of the inverse problem is to
use a neural network to compute directly the temperature
profile (in the output of ) with the brightness temperature
measurements (in the input of ). See [9] for this direct
inversion with the TOVS instrument and [1] for the application
of this technique to the IASI interferometer. The neural model

could also be regularized, for example to impose a
constraint of smoothness on the temperature profiles
of the output of where is one smoothing matrix of
Section II-A. An approach to solve this general problem in
the linear case could also be found on [15].

Other neural techniques of inversion, such as “distal learn-
ing” [12], “indirect inversion” [6] or “iterative inversion”
[13], first estimate the direct model by a MLP and then,
invert it using its neural Jacobians. This strategy solves some
difficulties, particularly the multivalued aspect of the inverse
function [12].

Here, we have used the iterative inversion because it is
an excellent test for the quality of the direct model and its
Jacobians: after estimating the direct modelby a network
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Fig. 3. Neural Jacobian profiles of the direct model for TOVS, for one atmospheric situation of the TIGR data base, with and without “weight smoothing”
(
 = 1:0; 


0
= 0:0 and learning rate= 0.1).

(Section III-A), for a given radiance measurement

, we search for the temperature profile such that

This is achieved by iterative modifications in the

current solution using the neural Jacobians, according to:

• take a first guess (we always choose the mean tem-

perature profile in our TIGR data bases);

• modify the current solution using:

where is the learning step-rate

of the inversion algorithm.

This algorithm can be used to help solve an inverse problem.

But it can also be used to analyze what a neural network

has learned. Depending on the initial guess this inversion
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Fig. 4. Retrieved temperature profiles from the TIGR data base, with the iterative inversion algorithm, using the neural direct model with and without
“weight smoothing” (� = 0:1 and x0 = hxi):

process can give different solutions and, thus, can indicate
whether the direct model is robust or not.

We have tested this inversion technique with the two net-
works (with and without WS) of Section II-C which
simulate the direct radiative transfer. Then, for a given TOVS
measurement (the 11 brightness temperatures of the TOVS
channels sensitive to atmospheric temperature), we search for
the corresponding temperature profilesuch that

In Fig. 4, we represent four examples of this inversion
process. Each graph compares results with and without WS
regularization. The root mean square error in the restitution of
these four temperature profiles is given in Fig. 5. Fig. 4 shows
that, without WS regularization, the retrieved temperature
profiles are very irregular: oscillations around the real profile
are observed. The increase of the oscillations in the top of the
atmosphere is due to the discretization (atmospheric layers of
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Fig. 5. Root mean square error for the four restituted temperature profiles
from the TIGR data base, with the iterative inversion algorithm, using the
neural direct model with and without WS regularization(� = 0:1 and
x0 = hxi):

1 km) used for the temperature profile restitution. The TOVS
radiometer do not have channels sounding this pressure range
at such a high vertical resolution, so the number of degrees of
freedom in the restituted profile is higher than the number
of pieces of information given by the TOVS instrument.
However; this problem of oscillations from the surface to the
top of the atmosphere, is solved to a large extent with the WS
procedure.

The results of the inversion algorithm are then substantially
improved if we use our regularized model of the RTE. The
profile retrieved with WS regularization is a good estimation
of the real smooth profile both in term of errors (Fig. 4) and
in term of the smoothing characteristics of the profile.

Other advantages of this regularized inversion technique
are that the inversion process is rapid, the Jacobians of the
neural model are available (this is a very important fact for
the “variational assimilation” technique in numerical weather
prediction models) and that the inversion technique is well-

adapted for the analysis of the different solutions of the
inversion problem.

We have then shown that our regularized model of the direct
radiative transfer equation in Section III-A is more robust than
those without WS. We have shown the advantages that the WS
regularization can offer to neuronal inversion algorithms (like
“distal learning,” “iterative inversion,” or “indirect inversion”)
in cases where the function to invert is a functional sensitive
to the compensation phenomenon.

IV. CONCLUSION

We have presented an original approach to the regularization
of MLP: the WS algorithm. For functional approximation
with inputs resulting from the discretization of a continuous
function, the WS regularization smoothes the neural Jacobian
profiles with respect to the input index. Solving the compen-
sation phenomenon in such approximations, this algorithm
makes it possible to estimate a physically acceptable and
more robust solution. This specific regularization technique
appears to be more efficient, in our case, than other classi-
cal regularization algorithms like “weight decay” or “weight
elimination.”

We have illustrated the efficiency of this algorithm through
a real and quite complex problem stemming from space
meteorology: the radiative transfer model in the earth’s at-
mosphere and more particularly, the role of the temperature.
This application has demonstrated the rapidity of the learning
algorithm and the quality of solutions. The more robust neural
Jacobians obtained with WS regularization may be used, for
example, in a Numerical Weather Prediction models. They
could also be used in neural techniques of inversion like
“iterative inversion,” “distal learning” or “indirect inversion”
that use the neural Jacobians. We have tested our regularized
direct neuronal model in an iterative inversion algorithm
where the quality of neural Jacobians is essential to estimate
atmospheric temperature profiles from space measurements of
the earth outgoing radiance.

APPENDIX

If is an input component of the network, in
the hidden layer and an output component in , the
derivatives in (4) become

(12)

where is the Kronecker delta symbol. Then

(13)
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For example, with the previous matrix we obtain

(14)

where takes into account the edge
condition of
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